This is the absolute best, most complete high school level Physics course designed for kids who not only want to learn what physics is by doing it themselves, but also have greater ambitions and need to know this physics stuff so they can get paid in the real world to launch rockets to distant moons, build real working robots, develop new kinds of lasers, break the sound barrier several times over, and so much more.
The Introductory Physics course helps students recognize the nature and scope of physics and its relationship to the other sciences. Students will learn about basic topics such as motion, forces, energy, momentum, heat and heat transfer, waves, electricity, and magnetism. Students will be engaged in scientific inquiry, investigations, and labs so that they develop a conceptual understanding and basic scientific skills. The mathematics prerequisite skills are based on middle school mathematics topics such as data analysis, measurement, scientific notation, ratio and proportion, and algebraic expressions.
I. One-Dimensional Kinematics | |
1. IntroductionScalars and VectorsDistance and DisplacementSpeed and VelocityAcceleration | 3. Describing Motion with EquationsKinematic Equations and Problem-SolvingFree Fall and the Kinematic EquationsHow to use Kinematic Equations and Graphs |
2.Describing Motion with DiagramsVector DiagramsGraphingThe position-time “p-t” graphThe velocity-time “v-t” graph | 4. Free Fall and the Acceleration of GravityAcceleration of GravityGraphing Free Fall MotionGravity |
II. Newton’s Laws | |
1. Newton’s First Law of MotionNewton’s First LawInertia and MassState of MotionBalanced and Unbalanced Forces | 3. Newton’s Second Law of MotionNewton’s Second LawFinding AccelerationFinding Individual ForcesFree Fall and Air Resistance |
2. ForcesThe Meaning of ForceTypes of ForcesDrawing Free-Body DiagramsDetermining the Net Force | 4. Newton’s Third Law of MotionNewton’s Third LawIdentifying Action and Reaction Force Pairs |
5. Applying Newton’s Laws of MotionSolving Problem PracticeCoordinate Systems | |
III. Two Dimensional Kinematics | |
1. VectorsVector ComponentsRelative Velocity ProblemsIndependence of Perpendicular Components of Motion | 2. Projectile MotionWhat is a Projectile?Horizontal and Vertical Components of VelocityHorizontal and Vertical DisplacementInitial Velocity ComponentsHorizontally Launched ProjectilesNon-Horizontally Launched Projectiles |
IV. Conservation of Momentum | |
1. MomentumMomentum and Impulse ConnectionMomentum Conservation PrincipleIsolated SystemsEquations as a Guide to ThinkingMomentum Conservation in Explosions | |
V. Work, Energy, and Power | |
1. Basic ConceptsWork DefinedPotential EnergyKinetic EnergyMechanical EnergyPower | 2. The Work-Energy RelationshipInternal vs. External ForcesAnalysis of Situations Involving External ForcesAnalysis of Situations in Which Mechanical Energy is ConservedApplication and Practice Questions |
VI. Circular Motion | |
1. Characteristics for Circular MotionSpeed and VelocityAccelerationCentripetal ForceApplications of Circular Motion | 3. Planetary and Satellite MotionKepler’s Three LawsCircular Motion Principles for SatellitesMathematics of Satellite MotionWeightlessness in OrbitEnergy Relationships for Satellites |
2. Universal GravitationInverse Square LawNewton’s Law of Universal GravitationThe Value of g | |
VII. Thermodynamics | |
1. Thermal PhysicsTemperature and ThermometersWhat is Heat?Methods of Heat TransferRates of Heat TransferWhat Does Heat Do?Measuring the Quantity of HeatCalorimeters and Calorimetry | |
VIII. Static Electricity | |
1. Basic Terminology and ConceptsThe Structure of MatterNeutral vs. Charged ObjectsCharge InteractionsConductors and InsulatorsPolarization | 3. Electric ForceCharge Interactions RevisitedCoulomb’s LawInverse Square LawNewton’s Laws and the Electrical Force |
2. Charging Methods Charging by FrictionCharging by InductionCharging by ConductionGrounding – the Removal of a Charge | 4. Electric FieldsAction-at-a-DistanceElectric Field IntensityElectric Field LinesElectric Fields and ConductorsLightning |
IX. Current Electricity | |
1. Electric Potential DifferenceElectric Field and the Movement of ChargeElectric PotentialElectric Potential Difference | 3. Electrical ResistanceJourney of a Typical ElectronResistanceOhm’s LawPower Revisited |
2. Electric CurrentWhat is an Electric Circuit?Requirements of a CircuitElectric CurrentPower: Putting Charges to WorkCommon Misconceptions Regarding Electric Circuits | 4. Circuit ConnectionsCircuit Symbols and Circuit DiagramsTwo Types of ConnectionsSeries CircuitsParallel CircuitsCombination Circuits |
X. Waves | |
1. VibrationsVibrational MotionProperties of Periodic MotionPendulum MotionMotion of a Mass on a Spring | 4. Behavior of WavesBoundary BehaviorReflection, Refraction, and DiffractionInterference of WavesThe Doppler Effect |
2. The Nature of a WaveWaves and Wavelike MotionWhat is a Wave?Categories of Waves | 5. Standing WavesNodes and Anti-nodesHarmonics and PatternsMathematics of Standing Waves |
3. Properties of a WaveThe Anatomy of a WaveFrequency and Period of a WaveEnergy Transport and the Amplitude of a WaveThe Speed of a WaveThe Wave Equation | |
XI. Sound Waves | |
1. The Nature of a Sound WaveSound is a Mechanical WaveSound as a Longitudinal WaveSound is a Pressure Wave | 4. Resonance and Standing WavesNatural FrequencyForced VibrationStanding Wave PatternsFundamental Frequency and Harmonics |
2. Sound PropertiesPitch and FrequencyIntensity and the Decibel ScaleThe Speed of SoundThe Human Ear | 5. Physics of Musical InstrumentsResonanceGuitar StringsOpen-End Air ColumnsClosed-End Air Columns |
3. Behavior of Sound WavesInterference and BeatsThe Doppler Effect and Shock WavesBoundary BehaviorReflection, Refraction, and Diffraction | |
XII. Light Waves | |
1. How Do We Know Light is a Wave?Wavelike Behaviors of LightTwo Point Source InterferenceThin Film InterferencePolarization | 3. Two-Point Source InterferenceAnatomy of a Two-Point Source Interference PatternThe Path DifferenceYoung’s EquationYoung’s Experiment |
2. Color and VisionThe Electromagnetic and Visible SpectraVisible Light and the Eye’s ResponseLight Absorption, Reflection, and TransmissionColor AdditionColor SubtractionBlue Skies and Red Sunsets | |
XIII. Reflection | |
1. Reflection and its ImportanceThe Role of Light to SightThe Line of SightThe Law of ReflectionSpecular vs. Diffuse Reflection | 3. Concave MirrorsThe Anatomy of a Curved MirrorReflection of Light and Image FormationRay DiagramsThe Mirror EquationSpherical Aberration |
2. Image Formation in Plane MirrorsWhy is an Image Formed?Image Characteristics in Plane MirrorsRay Diagrams for Plane MirrorsWhat Portion of a Mirror is Required to View an Image?Right Angle Mirrors | 4. Convex MirrorsReflection and Image Formation for Convex MirrorsRay Diagrams – Convex MirrorsImage Characteristics for Convex MirrorsThe Mirror Equation – Convex Mirrors |
XIV. Refraction | |
1. Refraction at a BoundaryBoundary BehaviorRefraction and SightOptical Density and Light SpeedThe Direction of Bending | 4. Interesting Refraction PhenomenaDispersion of Light by PrismsRainbow FormationMirages |
2. The Mathematics of RefractionThe Angle of RefractionSnell’s LawRay Tracing and Problem-SolvingDetermination of n Values | 5. Image Formation by LensesThe Anatomy of a LensRefraction by LensesImage Formation RevisitedConverging & Diverging LensesThe Mathematics of Lenses |
3. Total Internal ReflectionBoundary Behavior RevisitedTotal Internal ReflectionThe Critical Angle | 6. The EyeThe Anatomy of the EyeImage Formation and DetectionFarsightedness & Nearsightedness |
XV. Test Practice Sessions | |
AP Physics Practice Test | |
Click here to go to your VERY LAST lesson… Dream BIG! |